溶氧仪的作用

发布时间:17-05-05 16:50分类:技术文章 标签:溶氧仪,溶氧仪的作用
溶解氧仪是测量溶解于水溶液中所包含的氧气含量。氧气通过周围的空气、空气流动和光合作用溶解至水中。可用来测量对氧含量产生的反应速度、流程效率或环境的流程进行监控,如水产养殖、生物反应、环境测试(湖、溪、海洋)、水/废水处理、葡萄酒生产。溶氧仪通过呼吸和分解作用,溶解氧会在水中消耗,主要依靠空气和光合作用进行补充。水中氧的含量主要取决于温度。温水中的氧浓度要低于冷水。但溶氧含量过高反而对动植物会有所害。目前实市场有德国WTW、美国优特、意大利哈纳、英国PARTECH、中国北京康高特等品牌仪器仪表。如:LDOTM溶氧仪*是哈希公司采用*新技术开发而成的,适用于实验室和野外测试的两款便携式仪器。LDOTM溶氧仪是溶解氧测量的*新技术-荧光法测量。LDO溶解氧传感器被一层荧光物质所掩盖,当LED光源发出蓝光照射到传感器表面的荧光物质时,该物质会受到激发,释放出红光,其中所发出的蓝光到红光的释放范围的时间段会自动记录下来。当水中的氧气浓度越高,所释放的红光时间越短,在所释放的时间段之内会与溶解氧浓度建立相关性。因此,通过测定红光的释放时间计算出溶解氧浓度,进而在屏幕中直接显示出溶解氧浓度。其测量溶解氧的技术方面具有诸多优点无需极化校准、维护量低、抗干扰能力强、荧光帽耐用。

水体中溶解氧与水温、盐分、大气压关系解析

李桃刘运年熊明艳

株洲市环境监测中心站,湖南株洲412000

空气中的分子态氧溶解在水中称为溶解氧。水中的溶解氧的含量与空气中氧的分压、水的温度等有密切关系。在自然环境中,空气中的含氧量变动不大,故水温是主要的因素。气温越高,溶解度越小,气温越低,溶解度越大;但实践证明,盐分对水体中的溶解氧也有较大的影响。

一、水中氧气的来源

溶解氧是水生生物生存不可缺少的条件。其来源一是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。

1、空气的溶解

水面与空气接触,空气中的氧气将溶于水中,溶解的速率与水中溶氧的不饱和程度成正比,还与水面扰动状况及单位体积的表面积有关,也就与风力和水深有关。氧气在水中的不饱和程度大,水面风力大和水较浅时,空气溶解起的作用就大。

澳门新蒲京娱乐诚,2、光合作用

水体中含有的水生植物与阳光的光合作用可释放出氧气,是水体中氧气的另一主要来源。

3、一些水塘或水库在补水的同时,可增加缺氧水体氧气的含量。在工厂化流水养鱼中的补水是充氧过程。在非流水养鱼的池塘或水库中,补水量较小,补水对鱼池的直接增氧作用不大。

二、水中氧气的消耗

1、鱼、虾等养殖生物呼吸,鱼、虾呼吸耗氧率随鱼、虾种类、个体大小、发育阶段、水温等因素而变化。一般鱼的呼吸耗氧率在63.5~665mg/kg·h,且随个体的增大而增加。而耗氧率随个体的增大而减小。在适宜的温度范围内,水温升高,鱼、虾耗氧率增加,即水温和个体大小对生物的耗氧速率影响很大。

2、水中微型生物耗氧

水中微型生物耗氧水中微型生物耗氧主要包括:浮游动物、浮游植物、细菌呼吸耗氧以及有机物在细菌参与下的分解耗氧。这部分氧气的消耗也与耗氧生物种类、个体大小、水温和水中有机物的数量有关。浮游植物也呼吸耗氧,只是白天其光合作用产氧量远大于本身的呼吸耗氧量。据研究,处于迅速生长期的浮游植物,每天的呼吸耗氧量占其产氧量的10~20%。有机物耗氧主要决定于有机物的数量和有机物的种类。通常把这一部分氧气的消耗叫做“水呼吸”耗氧。

水体中微生物分解有机物时消耗水中溶解氧的量也就是我们通常所说的生化需氧量有关,也与外因有关。对于水中鱼类而言,溶解氧需大于4mg/L才能保证其正常的生命活动。水中溶解氧含量偏低,如低于4mg/L,虽未达到窒息点,不会引起鱼类的急性反应,但会引起慢性危害,鱼、虾就会游向水面,呼吸表层水溶氧,严重时吞咽空气,这一现象称为“浮头”。鱼类浮头轻者生长速度和成活率下降,重则引起泛池或大量死亡。鱼、虾长期生活在溶氧不足的水中,体质将下降,对疾病抵抗力降低,发病率升高,更易“中毒”致死。

我们知道如果空气中充满了毒气人是活不了的,同理鱼也是这样。那么水中的毒素都有哪些,是怎么产生的呢?对鱼有致命危害的毒素有主要有氨和亚硝酸盐,它们都是剧毒,极低的含量就能造成鱼的死亡。氨浓度超过0.012毫克/升时鱼就有中毒的危险,亚硝酸盐含量在0.1毫克以下是安全的健康水质,0.1毫克是轻微污染,0.25毫克以上则为严重污染,1毫克或以上水中生物便开始走向死亡。毒素的产生是这样的:鱼的呼吸、尿液以及鱼的粪便和残饵等有机物,会使水中的异营菌大量繁殖,异营菌的代谢产物就是剧毒的氨。在一个成熟的硝化系统中,氨会马上被亚硝酸菌分解成亚硝酸盐,然后由硝酸菌分解成为硝酸盐。硝酸盐是藻类的营养来源,当硝酸盐浓度太高时,会导致藻类大量滋生,致使水体中的溶解氧更低。

四、水体中溶解氧与水温、盐分、大气压的关系探讨

1、氧在水中的溶解度与温度的关系

根据气体热胀冷缩的原理,气体在温度高时,分子间的间距大,温度低时,分子间间距小,故在温度低时空气中的氧气更容易溶于水,其溶解度就增大了,反之,温度升高,气体溶解度减少,比如烧水的时候可看见有很多小气泡,其中就是有部分溶于水中的气体受热逸出。

水温升高一方面导致水中溶解氧减少,另一方面水温升高会加速耗氧反应,最终导致水体缺氧或水质恶化。

溶解度随温度及大气中氧之分压而改变,遵循亨利定律(HenryLaw),如下式所示:

[O2]=Kh×Po2

式中[O2]为水溶液氧气之平衡,Po2为氧气之分压,Kh则为亨利常数,其值随温度而异,当温度高时,Kh值较低,温度低时,Kh值较高。因此,在夏季温度偏高时,水中溶解氧值偏低,在冬季温度偏低时,水中溶解氧值就偏高。

据有关数据统计,在一个大气压下,水温由10℃升到35℃,氧在纯净水中的溶解度由11.27mg/L降到6.93mg/L。水体中的饱和溶解量在20—10℃时为9.17—11.33毫克/升,在101.325KPa、20℃情况下,纯水中饱和溶解氧含量约9毫克/升。对于人类来说,健康的饮用水中溶解氧含量不得小于6mg/L。